KINEMATIC EQUATIONS

Why and when Kinematic Equations are used

- Kinematic Equations are the \qquad expressions used to predict information about an object's \qquad -
- They can \qquad be used when the \qquad of an object is \qquad .

THE KINEMATIC EQUATIONS
$\Delta X=V_{i} t+1 / 2 a t^{2}$
$V_{f}=V_{i}+$ at
$V_{f}^{2}=V_{i}^{2}+2 a \Delta x$
$\Delta X=1 / 2\left(V_{i}+V_{f}\right) t$
Your new best friends!!!

Symbols and Units Review
$\Delta X=$ \qquad
$\vee f=$ \qquad
$\mathrm{Vi}=$ \qquad
$A=$ \qquad
$\Delta t=$ \qquad

In 1976, Kitty Hambleton of the United States drove a rocket-engine car to a maximum speed of $965 \mathrm{~km} / \mathrm{h}$. Suppose Kitty started at rest and underwent a constant acceleration with a magnitude of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. What distance would she have had to travel in order to reach the maximum speed?

G	U	E	S	S
Find what is given	Find what is unknown	Find Equation to use (rearrange	Substitute	Solve
1) Write the \qquad and the \qquad that have been \qquad to you in the problem	2) Label what is unknown with a question mark	3) LABEL the variable that is NOT BEING USED -Pick the equation that does NOT have that variable	4) Put a number in place of every variable we have	5) Do the CORRECT MATH
$\begin{aligned} & \mathrm{V}_{\mathrm{i}}= \\ & \mathrm{V}_{\mathrm{t}}= \\ & \Delta \mathrm{T}= \\ & \Delta \mathrm{X}= \\ & \mathrm{A}= \end{aligned}$	$\begin{aligned} & V_{\mathrm{i}}= \\ & \mathrm{V}_{\mathrm{t}}= \\ & \Delta \mathrm{T}= \\ & \Delta \mathrm{X}= \\ & \mathrm{A}= \end{aligned}$			

